Design Guide for the Packaging of High Speed Electronic Circuits

Developed by the IPC-2251 Task Group (D-21a) of the High Speed/High Frequency Committee (D-20) of IPC

Supersedes:
IPC-D-317A - January 1995
IPC-D-317 - April 1990

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
Table of Contents

1 GENERAL ... 1
1.1 Purpose ... 1
1.2 Scope ... 1
1.3 Symbology, Terms and Definitions 1
1.3.1 Symbology ... 1
1.3.2 Terms and Definitions ... 2
1.4 Units .. 6

2 APPLICABLE DOCUMENTS ... 6

3 OVERVIEW ... 6
3.1 Decision Making Process 6
3.2 Design Options .. 7
3.2.1 System Electrical/Mechanical Constraints 7
3.2.2 Signal Integrity Design Constraints 8
3.2.3 System Electrical/Mechanical Requirements 9
3.3 Mechanical Requirements 9
3.3.1 Circuit Board... 10
3.3.2 Hybrid... 10
3.3.3 Component Packaging .. 10
3.4 Electrical Considerations 10
3.4.1 Power Distribution ... 10
3.4.2 Permittivity .. 10
3.4.3 Capacitive Versus Transmission Line Environment ... 11
3.4.4 Propagation Time .. 11
3.4.5 Characteristic Impedance 11
3.4.6 Signal Loading Effects 11
3.4.7 Crosstalk .. 12
3.4.8 Signal Attenuation ... 12

4 MECHANICAL CONSIDERATIONS 12
4.1 Printed Board ... 12
4.1.1 Substrate Materials ... 12
4.2 Component Packaging .. 14
4.2.1 Device ... 14
4.2.2 Connectors .. 14
4.2.3 Cables ... 15
4.3 Thermal Considerations ... 15
4.3.1 System Level Impacts 15
4.3.2 Board Level Impacts ... 15
4.3.3 Device Level Impacts ... 16
4.4 Component Placement ... 17
4.4.1 Crosstalk Management 17
4.4.2 Impedance Control .. 17
4.4.3 Power Distribution ... 18
4.4.4 Thermal Management 18
4.4.5 System Cost.. 18

5 ELECTRICAL CONSIDERATIONS 18
5.1 Power Distribution ... 18
5.1.1 System DC Model ... 18
5.1.2 Power Plane Impedance 19
5.1.3 Integrated Circuit Decoupling 20
5.1.4 Decoupling Capacitance and Plane Capacitance ... 22
5.1.5 Device Power Dissipation 25
5.2 Permittivity ... 25
5.2.1 Relative Permittivity ... 25
5.2.2 Effective Relative Permittivity 25
5.2.3 Frequency Dependence 26
5.3 Lump ed Capacitance Versus Transmission Line Environment ... 28
5.4 Propagation Delay Time ... 30
5.4.1 Capacitive Line .. 30
5.4.2 Transmission Line ... 30
5.5 Impedance Models ... 31
5.5.1 Microstrip .. 31
5.5.2 Embedded Microstrip 32
5.5.3 Centered Stripline ... 33
5.5.4 Dual-Stripline .. 33
5.5.5 Differential Pair Conductors 34
5.6 Loading Effects ... 36
5.6.1 Termination Resistors 36
5.6.2 Reflections .. 36
5.6.3 Minimum Separation 36
5.6.4 Distributed Loading .. 38
5.6.5 Lumped Loading ... 39
5.6.6 Radial Loading .. 40
5.6.7 Logic Signal Line Loading Models 41
5.6.8 Timing Calculation .. 42
5.7 Crosstalk ... 44
5.7.1 Model ... 44
5.7.2 Microstrip Transmission Line 46
5.7.3 Embedded Microstrip Transmission Line 46
5.7.4 Backward Crosstalk Amplitudes 46
5.7.5 Stripline .. 46
5.7.6 TTL/MOS Models....................................... 47
5.8 Signal Attenuation.. 47
5.8.1 Resistive Losses (Skin Effect)....................... 47
5.8.2 Dielectric Losses....................................... 48
5.8.3 Rise Time Degradation................................. 48
5.9 Computer Simulation Program......................... 49
5.9.1 Computer Simulation Models.......................... 49
5.10 Connectors ... 49
5.10.1 Sensitivity.. 49
5.10.2 Distributed Line Compensations....................... 49
5.10.3 Connector Types... 49
5.11 EMI Layout Considerations.............................. 49
5.11.1 Reasons for Considering EMI Layout................. 49
5.11.2 Digital Edge Rates...................................... 50
5.11.3 Suggested EMI Layout Practices....................... 50

6 PERFORMANCE TESTING 52
6.1 Impedance Testing .. 52
6.1.1 Principle of Impedance Testing Using a TDR.......... 52
6.1.2 Impedance Measuring Test Equipment............... 52
6.2 Impedance Test Structures and Test Coupons 52
6.2.1 Test Structure Design................................... 52
6.2.2 Test Probes and Connections........................... 53
6.2.3 Locating Impedance Test Structures 53
6.2.4 A Simple Impedance Test Method....................... 53
6.3 Stripline Impedance Test Coupon......................... 53

Appendix A ... 55
Appendix B ... 76
Appendix C ... 80
Appendix D ... 82

Figures
Figure 3-1 High-Speed Packaging Design Concept........ 7
Figure 4-1 Schematic of Information, Electrical Power and Enthalpy (Heat) Flows 16
Figure 4-2 Heat Flux vs. Component Area 16
Figure 4-3 Component Placement Guideline.................. 17
Figure 5-1 DC Distribution Model......................... 18
Figure 5-2 DC Power Distribution System (Without Remote Sensing)......................... 20
Figure 5-3 Decoupling Impedance Modeling - Power Supply.............. 20
Figure 5-4 Device Decoupling Model........................... 21
Figure 5-5 Capacitive and Transmission Line Current Pulses – A) is for a very short line and B) is for a long line 21
Figure 5-6 Fourier Transform 22
Figure 5-7 Capacitor Equivalent Circuit 23
Figure 5-8 (a) through (m) Typical Impedance Structures......................... 27
Figure 5-9 εr and tan δ versus frequency for FR-4............. 28
Figure 5-10 Capacitive Loading................................. 30
Figure 5-11 Wire Over Reference Plane 31
Figure 5-12 Flat Conductor Surface Microstrip 32
Figure 5-13 Flat Conductor Embedded Microstrip 32
Figure 5-14 Flat Conductor Centered Stripline 33
Figure 5-15 Wire Conductor Centered Stripline 33
Figure 5-16 Flat Conductor Dual Stripline (Asymmetrical Signals) 34
Figure 5-17 Wire Conductor Differential Centered Stripline......................... 34
Figure 5-18 Flat Conductor Shielded Broadside Coupled Differential Stripline 35
Figure 5-19 Flat Conductor Nonshielded Broadside Coupled Differential Stripline 35
Figure 5-20 Flat Conductor Shielded Edge Coupled Differential Stripline 35
Figure 5-21 Flat Conductor Shielded Edge Coupled Differential Dual Stripline 35
Figure 5-22 Flat Conductor Edge Coupled Differential Surface Microstrip 36
Figure 5-23 Flat Conductor Edge Coupled Differential Embedded Microstrip 36
Figure 5-24 Net Illustrating Point Discontinuity Waveforms 37
Figure 5-25 Addition of Two Pulses Traveling Opposite Directions 37
Figure 5-26 Distributed Line.................................... 38
Figure 5-27 Lumped Loading.................................... 39
Figure 5-28 Short Distributively Loaded Cluster 39
Figure 5-29 a) Lumped Loaded Transmission Line b) Equivalent Model 39
Figure 5-30 Waveforms for a Lumped Capacitive Load.... 39
Figure 5-31 Lumped Transmission Line......................... 40
Figure 5-32 Radial Loading..................................... 40
Figure 5-33 Example Configuration.............................. 40
Figure 5-34 Example of Radial Line............................... 41
Figure 5-35 Net Configuration................................. 41
Figure 5-36 Bus Configuration................................. 41
Figure 5-37 Wired-AND Configuration........................... 42
Figure 5-38 Multiple Reflections In A Transmission Line Between Two TTL Inverters 43
Figure 5-39 Equivalent Circuit Example (top) with Corresponding Lattice Diagram (bottom) 44
Figure 5-40 Predicted Driver (A) and Load (B) Waveforms for Figure 5-39 44
Figure 5-41 Induced Crosstalk Voltages 45
Figure 5-42 Crosstalk Voltages for a Line Terminated at Both Ends .. 45
Figure 5-43 Drivers and Receivers at a Common End 47
Figure 5-44 Drivers and Receivers at Opposite Ends 47
Figure 5-45 AC Noise Immunity for Selected TTL Families .. 48
Figure 6-1 TDR Impedance Test Coupon 54
Figure 6-2 Test Setup for Measuring Conductor Impedance (Suitable for Receiving Inspection) 54

Tables

Table 4-1 Wire Resistivity ... 13
Table 5-1 Copper Wire Characteristics 19
Table 5-2 Copper Busbar Resistances/ft 19
Table 5-3 Impedance for 0.1 µF and 0.001 µF DIP and 1206 Capacitors .. 23
Table 5-4 Typical Data for Some Logic Families 29
Table 5-5 Logic Model Classifications 36
Table 5-6 Connector Equivalent Bandwidth 50
1 GENERAL

1.1 Purpose The object of this document is to provide guidelines for the design of high-speed circuitry. The subjects presented here represent the major factors that may influence a high-speed design. This guide is intended to be used by circuit designers, packaging engineers, circuit board fabricators, and procurement personnel so that all may have a common understanding of each area.

1.2 Scope The goal in electronic packaging is to transfer a signal from one device to one or more other devices through a conductor. Considerations include electrical noise, electromagnetic interference, signal propagation time, thermo-mechanical environmental protection, and heat dissipation. High-speed designs are defined as designs in which the interconnecting properties affect circuit function and require consideration. Every electrical concept has relevant physical implementation data and limitations provided to match the electrical and mechanical relationships. This guideline presents first order approximations for each of the subject areas covered. If more detail is required, the papers presented in the bibliography may provide more detailed supplemental data. Since most high speed design requires signal integrity and EMI techniques, often field solvers, signal integrity simulation tools, EMI/EMC simulation programs may be required for resolving design challenges. Many PWB layout design tools include these tools as options to their programs. These simulators are driven by SPICE, IBIS, or other models. References to manufacturers of these tools may be found on the IPC Web site (www.ipc.org).

1.3 Symbology, Terms and Definitions

1.3.1 Symbology

Symbol	Description
ABT | Advanced Bipolar-CMOS Technology
AC | Advanced CMOS
ACQ | Advanced CMOS Quiet
ACT | Advanced CMOS TTL Compatible
ACTQ | Advanced CMOS TTL Compatible Quiet
AGP | Advanced Graphics Port Logic
AH | Advanced High-Speed CMOS
AHCT | Advanced High-Speed CMOS TTL Compatible
ALS | Advanced Low Power Schottky Technology
AS | Advanced Schottky Technology
BCT | Bipolar-CMOS Technology
CMOS | Complimentary Metal Oxide Semiconductor
COB | Chip-On-Board
CTE | Coefficient of Thermal Expansion
CTEXY | X and Y-Axis Coefficient of Thermal Expansion
CTEZ | Z-Axis Coefficient of thermal expansion
CTT | Center Tap Terminated Logic
DC | Direct Current
DIP | Dual In-line Package
DWB | Discrete Wiring Board
dV/dT | Delta Voltage/Delta Time (Edge Slew Rate)
ECL | Emitter Coupled Logic
EMI | Electromagnetic Interference
ESD | Electro-Static Discharge
F | Fast Bipolar Logic Technology
FR-4 | Flame Retardant Level 4, Epoxy Glass Dielectric Material
GaAs | Gallium Arsenide Technology
GTL | Gunning Transceiver Logic
GTL+ | Gunning Transceiver Logic Plus
HC | High-Speed CMOS Technology
HCT | High-Speed CMOS TTL Compatible
HL | High-to-Low Signal Edge Transition
HSTL | High-Speed Transceiver Logic
IBIS | I/O Buffer Information Specification
IBuf | Input Buffer
IC | Integrated Circuit
KB | Backward Crosstalk
KF | Forward Crosstalk
LG | Ground Plane Inductance
LH | Low-High Signal Edge Transition
LP | Power Plane Inductance
LVDS | Low Voltage Differential Signalling
LVEL | Low Voltage ECL
LVPECL | Low Voltage PECL
LVCMOS | Low Voltage CMOS Technology
LVT | Low Voltage Technology