Generic Standard on Printed Board Design

Developed by the IPC-2221 Task Group (D-31b) of the Rigid Printed Board Committee (D-30) of IPC

Supersedes:
IPC-2221 - February 1998

Users of this publication are encouraged to participate in the development of future revisions.

Contact:
IPC
2215 Sanders Road
Northbrook, Illinois
60062-6135
Tel 847 509.9700
Fax 847 509.9798
FOREWORD

This standard is intended to provide information on the generic requirements for organic printed board design. All aspects and details of the design requirements are addressed to the extent that they can be applied to the broad spectrum of those designs that use organic materials or organic materials in combination with inorganic materials (metal, glass, ceramic, etc.) to provide the structure for mounting and interconnecting electronic, electromechanical, and mechanical components. It is crucial that a decision pertaining to the choice of product types be made as early as possible. Once a component mounting and interconnecting technology has been selected the user should obtain the sectional document that provides the specific focus on the chosen technology.

It may be more effective to consider alternative printed board construction types for the product being designed. As an example the application of a rigid-flex printed wiring board may be more cost or performance effective than using multiple printed wiring boards, connectors and cables.

IPC’s documentation strategy is to provide distinct documents that focus on specific aspect of electronic packaging issues. In this regard document sets are used to provide the total information related to a particular electronic packaging topic. A document set is identified by a four digit number that ends in zero (0).

Included in the set is the generic information which is contained in the first document of the set and identified by the four digit set number. The generic standard is supplemented by one or many sectional documents each of which provide specific focus on one aspect of the topic or the technology selected. The user needs, as a minimum, the generic design document, the sectional of the chosen technology, and the engineering description of the final product.

As technology changes specific focus standards will be updated, or new focus standards added to the document set. The IPC invites input on the effectiveness of the documentation and encourages user response through completion of “Suggestions for Improvement” forms located at the end of each document.
Table of Contents

1 SCOPE ... 1
1.1 Purpose ... 1
1.2 Documentation Hierarchy 1
1.3 Presentation .. 1
1.4 Interpretation ... 1
1.5 Definition of Terms ... 1
1.6 Classification of Products 1
1.6.1 Board Type ... 1
1.6.2 Performance Classes 1
1.6.3 Producibility Level .. 2
1.7 Revision Level Changes 2

2 APPLICABLE DOCUMENTS .. 2
2.1 IPC ... 2
2.2 Joint Industry Standards 3
2.3 Society of Automotive Engineers 3
2.4 American Society for Testing and Materials 3
2.5 Underwriters Labs ... 3
2.6 IEEE ... 3
2.7 ANSI ... 4

3 GENERAL REQUIREMENTS .. 4
3.1 Information Hierarchy 6
3.1.1 Order of Precedence 6
3.2 Design Layout .. 6
3.2.1 End-Product Requirements 6
3.2.2 Density Evaluation .. 6
3.3 Schematic/Logic Diagram 6
3.4 Parts List .. 6
3.5 Test Requirement Considerations 7
3.5.1 Printed Board Assembly Testability 7
3.5.2 Boundary Scan Testing 8
3.5.3 Functional Test Concern for Printed Board Assemblies .. 8
3.5.4 In-Circuit Test Concerns for Printed Board Assemblies .. 10
3.5.5 Mechanical .. 12
3.5.6 Electrical .. 12
3.6 Layout Evaluation ... 13
3.6.1 Board Layout Design 13
3.6.2 Feasibility Density Evaluation 13
3.7 Performance Requirements 15

4 MATERIALS .. 17
4.1 Material Selection .. 17
4.2 Dielectric Base Materials (Including Prepregs and Adhesives) ... 17
4.2.1 Preimpregnated Bonding Layer (Prepreg) 17
4.2.2 Adhesives .. 17
4.2.3 Adhesive Films or Sheets 19
4.2.4 Electrically Conductive Adhesives 19
4.2.5 Thermally Conductive/Electrically Insulating Adhesives .. 19
4.3 Laminate Materials .. 20
4.3.1 Color Pigmentation .. 20
4.3.2 Dielectric Thickness/Spacing 20
4.4 Conductive Materials ... 20
4.4.1 Electroless Copper Plating 20
4.4.2 Semiconductive Coatings 20
4.4.3 Electrolytic Copper Plating 20
4.4.4 Gold Plating ... 20
4.4.5 Nickel Plating ... 22
4.4.6 Tin/Lead Plating .. 22
4.4.7 Solder Coating .. 22
4.4.8 Other Metallic Coatings for Edgeboard Contacts .. 23
4.4.9 Metallic Foil/Film .. 23
4.4.10 Electronic Component Materials 23
4.5 Organic Protective Coatings 24
4.5.1 Solder Resist (Solder Mask) Coatings 24
4.5.2 Conformal Coatings 25
4.5.3 Tarnish Protective Coatings 25
4.6 Marking and Legends ... 25
4.6.1 ESD Considerations .. 26

5 MECHANICAL/PHYSICAL PROPERTIES 26
5.1 Fabrication Considerations 26
5.1.1 Bare Board Fabrication 26
5.2 Product/Board Configuration 26
5.2.1 Board Type .. 26
5.2.2 Board Size .. 26
5.2.3 Board Geometries (Size and Shape) 26
5.2.4 Bow and Twist ... 27
5.2.5 Structural Strength ... 27
5.2.6 Composite (Constraining-Core) Boards 27
5.2.7 Vibration Design .. 29
Figure 5-3A Multilayer Metal Core Board with Two Symmetrical Copper-Invar-Copper Constraining Cores (when the Copper-Invar-Copper planes are connected to the plated-through hole, use thermal relief per Figure 9-4) ... 29
Figure 5-3B Symmetrical Constraining Core Board with a Copper-Invar-Copper Center Core 29
Figure 5-4 Advantages of Positional Tolerance Over Bilateral Tolerance, mm [in] 32
Figure 5-4A Datum Reference Frame 32
Figure 5-5A Example of Location of a Pattern of Plated-Through Holes, mm [in] 33
Figure 5-5B Example of a Pattern of Tooling/Mounting Holes, mm [in] 33
Figure 5-5C Example of Location of a Conductor Pattern Using Fiducials, mm [in] 34
Figure 5-5D Example of Printed Board Profile Location and Tolerance, mm [in] 35
Figure 5-5E Example of a Printed Board Drawing Utilizing Geometric Dimensioning and Tolerancing, mm [in] ... 35
Figure 5-6 Fiducial Clearance Requirements 36
Figure 5-7 Fiducials, mm ... 36
Figure 5-8 Example of Connector Key Slot Location and Tolerance, mm [in] 37
Figure 6-1 Voltage/Ground Distribution Concepts 38
Figure 6-2 Single Reference Edge Routing 39
Figure 6-3 Circuit Distribution 39
Figure 6-4 Conductor Thickness and Width for Internal and External Layers 41
Figure 6-5 Transmission Line Printed Board Construction .. 45
Figure 6-6 Capacitance vs. Conductor Width and Dielectric Thickness for Microstrip Lines, mm [in] ... 47
Figure 6-7 Capacitance vs. Conductor Width and Spacing for Striplines, mm [in] 48
Figure 6-8 Single Conductor Crossover 48
Figure 7-1 Component Clearance Requirements for Automatic Connector Insertion on Through-Hole Technology Printed Board Assemblies [in] 51
Figure 7-2 Relative Coefficient of Thermal Expansion (CTE) Comparison 54
Figure 8-1 Component Orientation for Boundaries and/or Wave Solder Applications 57
Figure 8-2 Component Body Centering 58
Figure 8-3 Axial-Leaded Component Mounted Over Conductors .. 58
Figure 8-4 Uncoated Board Clearance 59
Figure 8-5 Clamp-Mounted Axial-Leaded Component 59
Figure 8-6 Adhesive-Bonded Axial-Leaded Component .. 59
Figure 8-7 Mounting with Feet or Standoffs 59
Figure 8-8 Heat Dissipation Examples 60
Figure 8-9 Lead Bends ... 61
Figure 8-10 Typical Lead Configurations 61
Figure 8-11 Board Edge Tolerancing 63
Figure 8-12 Lead-In Chamfer Configuration 63
Figure 8-13 Typical Keying Arrangement 63
Figure 8-14 Two-Part Connector 64
Figure 8-15 Edge-Board Adapter Connector 64
Figure 8-16 Round or Flattened (Coined) Lead Joint Description .. 65
Figure 8-17 Standoff Terminal Mounting, mm [in] 66
Figure 8-18 Dual Hole Configuration for Interfacial and Interlayer Terminal Mountings 66
Figure 8-19 Partially Clinched Through-Hole Leads 66
Figure 8-20 Dual In-Line Package (DIP) Lead Bends 68
Figure 8-21 Solder in the Lead Bend Radius 69
Figure 8-22 Two-Lead Radial-Leaded Components 69
Figure 8-23 Radial Two-Lead Component Mounting, mm [in] .. 69
Figure 8-24 Meniscus Clearance, mm [in] 69
Figure 8-25 “TO” Can Radial-Leaded Component, mm [in] ... 69
Figure 8-26 Perpendicular Part Mounting, mm [in] 70
Figure 8-27 Flat-Packs and Quad Flat-Packs 70
Figure 8-28 Examples of Configuration of Ribbon Leads for Through-Hole Mounted Flat-Packs 70
Figure 8-29 Metal Power Packages with Compliant Leads ... 70
Figure 8-30 Metal Power Package with Resilient Spacers .. 71
Figure 8-31 Metal Power Package with Noncompliant Leads ... 71
Figure 8-32 Examples of Flat-Pack Surface Mounting .. 72
Figure 8-33 Round or Coined Lead 72
Figure 8-34 Configuration of Ribbon Leads for Planar Mounted Flat-Packs 72
Figure 8-35 Heel Mounting Requirements 72
Figure 9-1 Examples of Modified Land Shapes 74
Figure 9-2 External Annular Ring 74
Figure 9-3 Internal Annular Ring 74
Figure 9-4 Typical Thermal Relief in Planes 75
Figure 10-1 Example of Conductor Beef-Up or Neck-Down ... 78
Figure 10-2 Conductor Optimization Between Lands .. 79
Figure 10-3 Etched Conductor Characteristics 80
Figure 11-1 Flow Chart of Printed Board Design/ Fabrication Sequence 82
Figure 11-2 Multilayer Board Design/ Fabrication Sequence ... 83
Figure 11-3 Solder Resist Windows 83
Figure 12-1 Location of Test Circuitry 85
1 SCOPE
This standard establishes the generic requirements for the design of organic printed boards and other forms of component mounting or interconnecting structures. The organic materials may be homogeneous, reinforced, or used in combination with inorganic materials; the interconnections may be single, double, or multilayered.

1.1 Purpose The requirements contained herein are intended to establish design principles and recommendations that shall be used in conjunction with the detailed requirements of a specific interconnecting structure sectional standard (see 1.2) to produce detailed designs intended to mount and attach passive and active components. This standard is not intended for use as a performance specification for finished boards nor as an acceptance document for electronic assemblies. For acceptability requirements of electronic assemblies, see IPC/EIA-J-STD-001 and IPC-A-610.

The components may be through-hole, surface mount, fine pitch, ultra-fine pitch, array mounting or unpackaged bare die. The materials may be any combination able to perform the physical, thermal, environmental, and electronic function.

1.2 Documentation Hierarchy This standard identifies the generic physical design principles, and is supplemented by various sectional documents that provide details and sharper focus on specific aspects of printed board technology. Examples are:

- IPC-2222 Rigid organic printed board structure design
- IPC-2223 Flexible printed board structure design
- IPC-2224 Organic, PC card format, printed board structure design
- IPC-2225 Organic, MCM-L, printed board structure design
- IPC-2226 High Density Interconnect (HDI) structure design
- IPC-2227 Embedded Passive Devices printed board design (In Process)

The list is a partial summary and is not inherently a part of this generic standard. The documents are a part of the PCB Design Document Set which is identified as IPC-2220. The number IPC-2220 is for ordering purposes only and will include all documents which are a part of the set, whether released or in-process proposal format at the time the order is placed.

1.3 Presentation All dimensions and tolerances in this standard are expressed in hard SI (metric) units and paren-