Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices

A joint standard developed by the JEDEC JC-14.1 Committee on Reliability Test Methods for Packaged Devices and the B-10a Plastic Chip Carrier Cracking Task Group of IPC

Users of this standard are encouraged to participate in the development of future revisions.

Contact:

JEDEC
2500 Wilson Boulevard
Arlington, VA 22201
Phone (703) 907-7500
Fax (703) 907-7583

IPC
3000 Lakeside Drive, Suite 309S
Bannockburn, Illinois
60015-1249
Tel (847) 615-7100
Fax (847) 615-7105
Table of Contents

1 FOREWORD ... 1
 1.1 Purpose .. 1
 1.2 Scope ... 1
 1.2.1 Packages .. 1
 1.3 Assembly Processes ... 1
 1.3.1 Mass Reflow .. 1
 1.3.2 Localized Heating .. 1
 1.3.3 Socketed Components ... 1
 1.3.4 Point-to-Point Soldering ... 1
 1.4 Reliability ... 2
 1.5 Terms and Definitions ... 2
 1.5.1 Active Desiccant .. 2
 1.5.2 Bar Code Label ... 2
 1.5.3 Bulk Reflow ... 2
 1.5.4 Carrier .. 2
 1.5.5 Desiccant .. 2
 1.5.6 Floor Life ... 2
 1.5.7 Humidity Indicator Card (HIC) 2
 1.5.8 Manufacturer’s Exposure Time (MET) 2
 1.5.9 Moisture Barrier Bag (MBB) 2
 1.5.10 Rework .. 2
 1.5.11 Shelf Life .. 2
 1.5.12 SMD ... 2
 1.5.13 Solder Reflow .. 2
 1.5.14 Water Vapor Transmission Rate (WVTR) 2

2 APPLICABLE DOCUMENTS ... 3
 2.1 American Society for Testing and Materials (ASTM) 3
 2.2 Electronic Industries Alliance (EIA, JEDEC) 3
 2.3 IPC Standards ... 3
 2.4 Joint Industry Standards .. 3
 2.5 Department of Defense .. 3

3 DRY PACKING .. 3
 3.1 Requirements ... 3
 3.2 Drying of SMD Packages and Carrier Materials Before Being Sealed in MBBs ... 4
 3.2.1 Drying Requirements - Levels 2a - 5a 4
 3.2.2 Drying Requirements - Carrier Materials 4
 3.2.3 Drying Requirements - Other 4
 3.2.4 Excess Time Between Bake and Bag 4
 3.3 Dry Pack ... 4
 3.3.1 Description ... 4
 3.3.2 Materials ... 4
 3.3.3 Solderability Limitations 4
 3.3.4 Moisture Barrier Bag Sealing 6
 3.3.5 Shelf Life .. 6

4 DRYING ... 7
 4.1 Post Exposure to Factory Ambient 7
 4.1.1 Any Duration Exposure ... 7
 4.1.2 Short Duration Exposure 7
 4.2 General Considerations for Baking 8
 4.2.1 High Temperature Carriers 8
 4.2.2 Low Temperature Carriers 8
 4.2.3 Paper and Plastic Container Items 8
 4.2.4 Bakeout Times .. 9
 4.2.5 ESD Protection .. 9
 4.2.6 Reuse of Carriers .. 9

5 USE ... 10
 5.1 Incoming Bag Inspection .. 10
 5.1.1 Upon Receipt ... 10
 5.1.2 Component Inspection ... 10
 5.2 Floor Life .. 10
 5.3 Safe Storage ... 10
 5.3.1 Dry Pack .. 10
 5.3.2 Shelf Life .. 10
 5.3.3 Dry Atmosphere Cabinet 10
 5.4 Reflow .. 11
 5.4.1 Opened MBB ... 11
 5.4.2 Reflow Temperature Extremes 11
 5.4.3 Additional Thermal Profile Parameters 11
 5.4.4 Multiple Reflow Passes .. 11
 5.4.5 Maximum Reflow Passes 11
 5.5 Drying Indicators .. 11
 5.5.1 Excess Humidity in the Dry Pack 11
 5.5.2 Floor Life or Ambient Temperature/Humidity Exceeded .. 12
 5.5.3 Level 6 SMD Packages ... 12

6 BOARD REWORK ... 12
 6.1 Component Removal, Rework and Remount .. 12
 6.1.1 Removal for Failure Analysis 12
 6.1.2 Removal and Remount ... 12
 6.2 Baking of Populated Boards 12

7 DERATING DUE TO FACTORY ENVIRONMENTAL CONDITIONS ... 12
Handling, Packing, Shipping and Use of Moisture/ Reflow Sensitive Surface Mount Devices

1 FOREWORD

The advent of surface mount devices (SMDs) introduced a new class of quality and reliability concerns regarding package damage “cracks and delamination” from the solder reflow process. This document describes the standardized levels of floor life exposure for moisture/reflow-sensitive SMD packages along with the handling, packing and shipping requirements necessary to avoid moisture/reflow-related failures. Companion documents J-STD-020 and JEP113 define the classification procedure and the labeling requirements, respectively.

Moisture from atmospheric humidity enters permeable packaging materials by diffusion. Assembly processes used to solder SMD packages to printed circuit boards (PCBs) expose the entire package body to temperatures higher than 200°C. During solder reflow, the combination of rapid moisture expansion, materials mismatch, and material interface degradation can result in package cracking and/or delamination of critical interfaces within the package.

The solder reflow processes of concern are convection, convection/IR, infrared (IR), vapor phase (VPR) and hot air rework tools. The use of assembly processes that immerse the component body in molten solder are not recommended for most SMD packages.

1.1 Purpose The purpose of this document is to provide SMD manufacturers and users with standardized methods for handling, packing, shipping, and use of moisture/reflow sensitive SMD packages that have been classified to the levels defined in J-STD-020. These methods are provided to avoid damage from moisture absorption and exposure to solder reflow temperatures that can result in yield and reliability degradation. By using these procedures, safe and damage-free reflow can be achieved, with the dry packing process, providing a minimum shelf life capability in sealed dry-bags of 12 months from the seal date.

1.2 Scope

1.2.1 Packages

1.2.1.1 Nonhermetic This standard applies to all nonhermetic SMD packages subjected to bulk solder reflow processes during PCB assembly, including plastic encapsulated packages and all other packages made with moisture-permeable polymeric materials (epoxies, silicones, etc.) that are exposed to the ambient air.

1.2.1.2 Hermetic Hermetic SMD packages are not moisture sensitive and do not require moisture precautionary handling.

1.3 Assembly Processes

1.3.1 Mass Reflow This standard applies to bulk solder reflow assembly by convection, convection/IR, infrared (IR), and vapor phase (VPR) processes. It does not apply to bulk solder reflow processes that immerse the component bodies in molten solder (e.g., wave soldering bottom mounted components). Such processes are not allowed for many SMDs and are not covered by the component qualifications standards used as a basis for this document.

1.3.2 Localized Heating This standard also applies to moisture sensitive SMD packages that are removed or attached singly by local ambient heating, i.e., “hot air rework.” See Clause 6.

1.3.3 Socketed Components This standard does not apply to SMD packages that are socketed and not exposed to solder reflow temperatures. Such SMD packages are not at risk and do not require moisture precautionary handling.

1.3.4 Point-to-Point Soldering This standard does not apply to SMD packages in which only the leads are heated to reflow the solder, e.g., hand-soldering, hot bar attach of gull wing leads, and through hole by wave soldering. The heat absorbed by the package body from such operations is typically much lower than for bulk surface mount reflow or hot air rework, and moisture precautionary measures are typically not needed.